
CSCC24 Week 4 Notes
1

Evaluation Order
- Most languages use ​call by value​ for evaluation order.

I.e. To evaluate f(x,y), evaluate x and y first (which one first depends on the language),
then plug into f's body, and then evaluate the body.

- E.g. If there is a function defined as f(x, y) = x:
 f (3+4, div(4, 2)) eval a parameter, arithmetic
→ f (7, div(4, 2)) eval the other parameter, arithmetic
→ f (7, 2) ready to plug in at last
→ 7

- However, a problematic parameter can cause an error/exception even if it would be
unused:
f (3+4, div(1, 0)) eval a parameter, arithmetic
→ f (7, div(1, 0)) eval the other parameter, arithmetic
→ Error caused by div(1,0)

- Haskell uses “​lazy evaluation​.” ​Lazy evaluation​ is also known as ​call by need​.
- Lazy evaluation in Haskell (sketch):

- To evaluate “f x y”: don’t evaluate x and y first. Just plug x and y into f’s right
hand side (RHS) and evaluate that.
If the RHS refers to the same parameter multiple times: same shared copy, no
duplication.

- If that runs you into pattern matching: evaluate parameter(s) just enough to
decide whether it's a match or non-match. If match, plug into RHS and evaluate.
If it’s a non-match, try the next pattern. (If it runs out of patterns, declare
“undefined” aka “error”.)

- To evaluate arithmetic operations, use call-by-value.
- E.g.

- E.g.

Take Function in Haskell:

- The take function takes a number and a list and returns the first n elements of the list,
where n is the number inputted.

- E.g. ​take 3 [a,b,c,d,e] = [a,b,c]
- E.g. ​take 3 [a,b] = [a,b]
- The implementation goes like this:

take 0 _ = []

CSCC24 Week 4 Notes
2

take _ [] = []
take n (x:xs) = x : take (n-1) xs

Single Linked List:
- Recall that lists in Haskell are linked lists.
- Singly-linked list is a very space-consuming data structure (all languages). And if you

ask for “the ith item” you're doing it wrong.
- E.g.

Equivalently, using the function composition operator “​.​”, we get:
cubeRoot = within 0.001 . iterate next

- With this, you really have a pipeline like Unix pipelines.
- If you use lists lazily in Haskell, it is an excellent control structure—a better for-loop than

for-loops. Then list-processing functions become pipeline stages. If you do it carefully, it
is even O(1)-space. If furthermore you're lucky (if the compiler can optimize your code),
it can even fit entirely in registers without node allocation and GC overhead.

- Thinking in high-level pipeline stages is both more sane and more efficient—with the
right languages.

- Some very notable list functions when you use lists lazily as for-loops, or when you think
in terms of pipeline stages:

- Producers:​ repeat, cycle, replicate, iterate, unfoldr, the [x..], [x..y] notation
(backed by enumFrom, enumFromTo)

- Transducers:​ map, filter, scanl, scanr, (foldr too, sometimes) take, drop, splitAt,
takeWhile, dropWhile, span, break, partition, zip, zipWith, unzip

- Consumers:​ foldr, foldl, foldl', length, sum, product, maximum, minimum, and,
all, or, any

- A ​producer​ is some monadic action that can yield values for downstream consumption.
- A ​consumer​ can only await values from upstream.
- A ​transducer​ is like a combination of both producers and consumers.
- E.g. of iterate:

CSCC24 Week 4 Notes
3

When lazy evaluation hurts:
- E.g. Consider the code below:

It takes a number, 0, and a list of numbers and computes the sum of the numbers in the
list.

Evaluation of mySumV2 [1,2,3]:
mySumV2 (1 : 2 : 3 : []) plug in
→ g 0 (1 : 2 : 3 : []) match, plug in
→ g (0 + 1) (2 : 3 : []) match, plug in
→ g ((0 + 1) + 2) (3 : []) match, plug in
→ g (((0 + 1) + 2) + 3) [] match, plug in
→ ((0 + 1) + 2) + 3 arithmetic at last
→ (1 + 2) + 3 ditto
→ 3 + 3 ditto
→ 6
This takes Ω(n) space for the postponed arithmetic.

- Note:​ If there is recursion, you bracket right to left. If there is no recursion, you bracket
left to right. If you look at the example of mySumV2 [1,2,3], you’ll see that it’s bracketed
left to right. I.e. ​(((0 + 1) + 2) + 3)
Consider the below example:
mySum [] = 0
mySum (x:xt) = x + mySum xt

mySum [1,2,3]
→ 1 + (mySum (2 : 3 : []))
→ 1 + (2 + (mySum (3 : [])))
→ 1 + (2 + (3 + (mySum ([]))))
→ 1 + (2 + (3 + (0)))
→ 1 + (2 + (3 + 0))
→ 1 + (2 + 3)
→ 1 + 5
→ 6

Notice how because there’s recursion, the brackets are right heavy.

