CSCC24 Week 4 Notes

Evaluation Order
- Most languages use call by value for evaluation order.
l.e. To evaluate f(x,y), evaluate x and y first (which one first depends on the language),
then plug into f's body, and then evaluate the body.
- E.g. If there is a function defined as f(x, y) = x:
f (3+4, div(4, 2)) eval a parameter, arithmetic
— f (7, div(4, 2)) eval the other parameter, arithmetic

—f(7,2) ready to plug in at last
—7

- However, a problematic parameter can cause an error/exception even if it would be
unused:

f (3+4, div(1, 0)) eval a parameter, arithmetic
— f(7,div(1,0)) eval the other parameter, arithmetic
— Error caused by div(1,0)
- Haskell uses “lazy evaluation.” Lazy evaluation is also known as call by need.
- Lazy evaluation in Haskell (sketch):
- To evaluate “f x y”: don’t evaluate x and y first. Just plug x and y into f’s right
hand side (RHS) and evaluate that.
If the RHS refers to the same parameter multiple times: same shared copy, no
duplication.
- If that runs you into pattern matching: evaluate parameter(s) just enough to
decide whether it's a match or non-match. If match, plug into RHS and evaluate.
If it's a non-match, try the next pattern. (If it runs out of patterns, declare
“‘undefined” aka “error”.)
- To evaluate arithmetic operations, use call-by-value.

doITerminate = take 2 (from 8)

fromn =n : from (n + 1)

*Main® dolTerminate
[8,1]

- E.g

H*Hain> doIEvenMakeSense

[0,0]

Take Function in Haskell:
- The take function takes a number and a list and returns the first n elements of the list,
where n is the number inputted.
- E.g. take 3 [a,b,c,d,e] = [a,b,c]
- E.g. take 3 [a,b] = [a,b]
- The implementation goes like this:
take 0 _=1]

CSCC24 Week 4 Notes

take _[]1=1]
take n (x:xs) = x : take (n-1) xs

Single Linked List:

Recall that lists in Haskell are linked lists.

Singly-linked list is a very space-consuming data structure (all languages). And if you
ask for “the ith item” you're doing it wrong.

E.g.

Newton's method with lazv lists. Like 1n Hughes's «why FP matters». Approximately solve x° -b=0, ie., cube root of b.

2 ¥
Soflx)=x"-b, f(x)=3x"
x1 = x - F{x)/F"(x)

x - (x*3 - b)/(3x"2)
x - (x - b/x"2)/3
[(2x + b/x*2)/3

The local function “next” below 1s responsible for computing x1 from x.

cubeRoot b = within @.881 (iterate next b)
-- From the standard library:
-- iterate f z = z : iterate T (f
-- =z & s itEiE]s
vihere
next x = (2%x + b/x"2) [3
within eps (x : x1 : rest)
| abs {x - x1) <= eps = x1
| otherwise = within eps (x1 : rest)

=%
z)
FaEELE =l k]

“w

Equivalently, using the function composition operator “.”, we get:
cubeRoot = within 0.001 . iterate next
With this, you really have a pipeline like Unix pipelines.
If you use lists lazily in Haskell, it is an excellent control structure—a better for-loop than
for-loops. Then list-processing functions become pipeline stages. If you do it carefully, it
is even O(1)-space. If furthermore you're lucky (if the compiler can optimize your code),
it can even fit entirely in registers without node allocation and GC overhead.
Thinking in high-level pipeline stages is both more sane and more efficient—with the
right languages.
Some very notable list functions when you use lists lazily as for-loops, or when you think
in terms of pipeline stages:
- Producers: repeat, cycle, replicate, iterate, unfoldr, the [x..], [x..y] notation
(backed by enumFrom, enumFromTo)
- Transducers: map, filter, scanl, scanr, (foldr too, sometimes) take, drop, splitAt,
takeWhile, dropWhile, span, break, partition, zip, zipWith, unzip
- Consumers: foldr, foldl, foldl', length, sum, product, maximum, minimum, and,
all, or, any
A producer is some monadic action that can yield values for downstream consumption.
A consumer can only await values from upstream.
A transducer is like a combination of both producers and consumers.
E.g. of iterate:

*Main> take 10 (iterate (\x -= x+1) 4)
[4,56,7,8,9,10,11,1213]

CSCC24 Week 4 Notes

When lazy evaluation hurts:

E.g. Consider the code below:

mySumV2 xs = g @ xs

g accum [] = accum
g accum (xX:xs) = g (accum + X) X5

It takes a number, 0, and a list of numbers and computes the sum of the numbers in the
list.

*Main> mySumV2 [1.2.3]
6

*Main> mySumV2 [1.2,3.4 5 6]
21

*Main> mySumV2 [1_10]

55

Evaluation of mySumVv2 [1,2,3]:
mySumV2(1:2:3:[]) plugin
—g0(1:2:3:1]) match, plug in
—g((0+1)(2:3:[]) match, plugin
—g((0+1)+2)(3:[]) match, plugin
—g(((0+1)+2)+3)[] match, plugin

—>(((0+1)+2)+3 arithmetic at last
—(1+2)+3 ditto

—3+3 ditto

— 6

This takes Q(n) space for the postponed arithmetic.

Note: If there is recursion, you bracket right to left. If there is no recursion, you bracket
left to right. If you look at the example of mySumV2 [1,2,3], you'll see that it's bracketed
left to right. l.e. (((0 + 1) + 2) + 3)

Consider the below example:

mySum[]=0

mySum (x:xt) = x + mySum xt

mySum [1,2,3]

— 1+ (mySum (2:3:1]))

— 1+ (2+ (mySum (3:])))
— 1+ (2+ (3 +(mySum ([]))))
—1+(2+(3+(0)
—1+(2+(3+0))
—1+(2+3)

—1+5

— 6

Notice how because there’s recursion, the brackets are right heavy.

